Analog-to-Digital Converter Design

From System Architecture to Transistor-level

Bibhudatta Sahoo
University of Illinois at Urbana-Champaign
Outline

- Introduction to Data Converters
 - Sampling and Quantization
 - Oversampling to improve performance
- Overview of Pipelined ADCs
 - Switch-capacitor Circuits – Overview
 - Non-idealities
 - Thermal Noise Cancellation
- System-level Specs. to Circuit Details
 - Case Study of Pipelined ADC
- Impact of Scaling on Data Converter Design
- Why Calibration
- Basics of Digital Calibration Techniques – With Examples
Data Converters 101

- **Real world**: Continuous-time, continuous-amplitude signals
- **Digital world**: Discrete-time, discrete-amplitude signal representation
- **Interface circuits**: ADC and DACs

Real world: Continuous-time, continuous-amplitude signals
Digital world: Discrete-time, discrete-amplitude signal representation
Interface circuits: ADC and DACs
Data Converters 101 (Contd.)

- Low-pass filtering to avoid aliasing ➔ Also called signal conditioning
- The process of sampling ➔ quantization ➔ decoding is an analog-to-digital converter (ADC)
Sampling-Time Domain

Impulse Sampling

\[y_a(t) = x(t) \sum_{k=-\infty}^{k=+\infty} \delta(t - k T_s) \]

Zero-order Hold

\[y_b(t) = x(t) \sum_{k=-\infty}^{k=+\infty} \delta(t - k T_s) * \prod \left(\frac{t}{T_s} - \frac{1}{2} \right) \]

Track-and-Hold

\[y_c(t) = y_1(t) + y_2(t) \]

Bibhudatta Sahoo
Sampling-Frequency Domain

Impulse Sampling

\[Y_a(f) = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} X(f - \frac{n}{T_s}) \]

Zero-order Hold

\[Y_b(f) = e^{-j\pi f T_s} \frac{\sin \pi f T_s}{\pi f T_s} \sum_{n=-\infty}^{+\infty} X(f - \frac{n}{T_s}) \]

Track-and-Hold

\[Y_c(f) = \sum_{n=-\infty}^{+\infty} e^{-jn\pi/2} \frac{\sin(n\pi/2)}{n\pi} X(f - \frac{n}{T_s}) \]

\[+ e^{-3j\pi f T_s/2} \frac{\sin(\pi f T_s/2)}{\pi f T_s} \sum_{n=-\infty}^{+\infty} X(f - \frac{n}{T_s}) \]
Various Non-Idealities in Sampling

- Acquisition-time
- Error band \(\rightarrow\) defines accuracy of sampling
- Hold settling time
- Pedestal Error
- Droop rate
- Sampling clock uncertainty
 - Clock Jitter
- Non-linearity
- Thermal Noise

Bibhudatta Sahoo
Quantization Basics

- Quantization error/noise: $e[n] = v[n] - y[n]$
- Least significant bit (LSB): Δ
- Quantizer has non-linear input-output characteristics
- Exact analytical modeling is difficult
 - Use a simplified model
Quantizer Modeling

- Quantization noise modeling can be simplified with the assumptions
 - Input \((y) \) stays within the no-overload input range
 - \(e[n] \) is uncorrelated with the input \(y \)
 - Spectrum of \(e[n] \) is white
 - Quantization noise is uniformly distributed

- Linearized quantizer model
 - Uniform Distribution of Noise
 - Quantization noise power: \(\sigma_e^2 = \frac{\Delta^2}{12} \)

- \(SQNR = 6.02 \cdot N + 1.76 \)
Performance Metrics of ADC

- Static Performance Metric
 - Offset error
 - Gain error
 - Differential nonlinearity (DNL)
 - Integral nonlinearity (INL)
 - Monotonicity

- Dynamic Performance Metric
 - Signal-to-Quantization Noise Ratio (SQNR)
 - Signal-to-Noise Ratio (SNR) & quantization + thermal noise
 - Spurious Free Dynamic Range (SFDR) & For an N-bit quantizer
 \[SFDR = 9.03N + 0.91 \text{ (dB)} \text{ for } N < 4\text{-bits}, \]
 \[SFDR = 8.07N + 3.29 \text{ (dB)} \text{ for } N > 4\text{-bits}. \]
 - Signal-to-Noise + Distortion Ratio (SNDR)
 - Effective Number of Bits (ENOB) & (SNDR-1.76)/6.02
 - Total Harmonic Distortion (THD)
 - Figure-of-Merit (FoM) & Power/(2f_{in,max} 2^{ENOB}) Joules/conv-step
Analog to Digital Converter Architectures

Resolution (bits)

Bandwidth (Hz)

1k 10k 100k 1M 10M 100M 1G 10G

Integrating
Oversampling
SAR, Algorithmic
Pipelined, Folding, Flash, Time-Interleaved
S/H with 1ps rms jitter

Bibhudatta Sahoo
Oversampling ratio (OSR)
Conversion bandwidth: $f_B = f_s / 2 \cdot OSR$
$SQNR = 6.02 \cdot N + 1.76 + 10 \cdot \log_{10}(OSR)$
0.5 bits increase in resolution per doubling in OSR

Bibhudatta Sahoo
Can we use feedback with high loop-gain ($A \cdot k_q$) to reduce the error $e = |u - v|$?

Since quantizer output cannot be equal to the input:

$$A \cdot k_q \to \infty \Rightarrow e = |u - v| \to \infty$$

The loop will be unstable as the error gets unbounded.
Oversampling with Feedback

- Use large loop-gain in the signal band and small loop-gain at higher frequencies
- At low frequencies $e = |u - v| \rightarrow 0$
- At high frequencies, low loop-gain stabilizes the loop
- $L(z)$ is the loop-filter
- This feedback arrangement is called a (noise) modulator
First-order Modulator

- Differencing (Δ) followed by an accumulator (Σ)
 - $\Delta\Sigma$ modulator
- At low frequencies $e = |u - v| \to 0$
First-order Noise Shaping

- Linearized model for the modulator

\[V(z) = z^{-1}U(z) + \left(1 - z^{-1}\right)E(z) \]

- Noise transfer function (NTF)
 - \((1-z^{-1})\): first-order differentiator
 - High-pass shaping of quantization noise

- Signal transfer function (STF)
 - Unit delay

Bibhudatta Sahoo
First-order ΔΣ Modulator

\[u \xrightarrow{f_s} u + \frac{1}{1-z^{-1}} y \xrightarrow{e[n]} e[n] \xrightarrow{z^{-1}} v \]

\[v[n] \quad \text{DSM time-domain Simulation} \]

\[S_v(f) \quad \text{DSM Output Spectrum} \]

Bibhudatta Sahoo
Delta-Sigma (ΔΣ) ADC

- Use oversampling \((f_s = 2 \cdot OSR \cdot BW)\) to shape the quantization noise out of the signal band
- Use low-resolution ADC and DAC to get much higher resolution
- Digitally filter out the out-of-band shaped (modulated) noise
- Trades-off SQNR with oversampling ratio (OSR)

Bibhudatta Sahoo
Higher-Order NTFs

- Higher order noise shaping
 - Reduced in-band noise, higher SQNR
- For \(NTF=(1-z^{-1})^{-N} \), in-band noise (IBN):
 \[
 \frac{\Delta^2}{12} \cdot \frac{\pi^{2N}}{(2N+1)} \cdot OSR^{-(2N+1)}
 \]
 - Ideally (N+1/2) bits increase in resolution per doubling in OSR
Higher-Order NTFs

- NTF gain increases at high frequencies (around $\omega \approx \pi$)
- Can we go on increasing the order? The loop becomes unstable resulting in oscillation.

Bibhudatta Sahoo
Pipelined ADC
- An Overview -
Each stage resolves a small number of bits (i.e. N_1, N_2, …, N_M bits).

The overall resolution of the ADC is $P = (N_1 + N_2 + … + N_M + N_{M+1})$.

Output of stage-i (called “residue” r_i) is digitized to $(P - \sum_{j=1}^{i} N_j)$-bits.

The low resolution ADC digitizing r_i is called the backend of stage-i.
Switched-Capacitor (SC) Circuit – An Overview (1)

- **Key building blocks:**
 - Switches
 - Capacitors
 - Op amp
 - Two-phase non-overlapping clock generator

- SC-Circuits function in charge domain.
- **Sample/Reset phase** ➔ Φ_1 is high ➔ Switches S_1 to S_4 are controlled by Φ_1, i.e. S_1 to S_4 close when Φ_1 is high.
 - It is called sample-phase as input signal is sampled.
 - It is also called reset-phase as op amp is reset (more later).
- **Hold/Amplification phase** ➔ Φ_2 is high ➔ Switches S_5 to S_7 are controlled by Φ_2, i.e. S_5 to S_7 close when Φ_2 is high.
 - V_{out} is an amplified and held version of the sampled V_{in}.

Bibhudatta Sahoo
Switched-Capacitor (SC) Circuit – An Overview (2)

- Falling edge of Φ_1 samples the input, V_{in1} and V_{in2}.
- In Φ_2 the sampled values get amplified to give V_{out1} & V_{out2}, respectively.
- During Φ_1 the sampled charge is $Q_S = C_S V_{in}$.
- During Φ_2 the charge is $Q_H = C_F V_{out}$.
- Since charge is conserved, $Q_S = Q_H \implies V_{out} = \frac{C_S}{C_F} V_{in}$.
- The gain of the circuit is the ratio of the sampling capacitor (C_S) to feedback capacitor (C_F).
During Φ_1 the sampled charge $Q_S = C_{iF}V_{in}$.

Since charge is conserved the charge during Φ_2 is given by $Q_H = C_{iF}(V_{THi} - V_X)$ resulting in $V_X = V_{in} - V_{THi}$.

When the comparator is clocked with the falling edge of Φ_2 it makes a decision based on whether $V_{in} > V_{THi}$ or $V_{in} < V_{THi}$.

Bibhudatta Sahoo
A 4-bit flash incorporates 15 switched capacitor comparators.

The threshold voltages V_{TH1} to V_{TH15} are generated by a resistor ladder comprising of 16 equal resistors.

The outputs of the comparator give a 15-bit wide thermometer code which controls the DAC of the MDAC.

The thermometer code is converted to 4-bit binary code using an on-chip look-up table, also called read-only-memory (ROM).

Note: A switched capacitor N-bit flash would incorporate 2^{N-1} switched capacitor comparators and a resistor ladder comprising 2^N resistors to generate the 2^{N-1} threshold voltages, V_{TH1} to $V_{TH2^{N-1}}$.
An M-bit MDAC incorporates 2^M unit capacitors (C_i, $i=1$ to 2^M), feedback capacitor C_F, switches, and an op amp.

This block does the following operations:

- Φ_1 is high (Sample phase/Reset phase):
 - Sampling of input
- Φ_2 is high (Amplification phase):
 - Digital-to-Analog Conversion (DAC)
 - Subtraction \rightarrow quantization noise generation
 - Amplification (Multiplying) \rightarrow scaling of the quantization noise to the full-scale for the later stages to digitize to relax the sensitivity requirements of the later stage circuits.

Note: A switched capacitor 4-bit flash would incorporate 2^4 unit capacitors.
During sample phase the sampled charge is,
\[Q_s = \sum_{i=1}^{2^M} C_i V_{in} \]

During amplification phase the charge is given by,
\[Q_a = \sum_{i=1}^{2^M-1} T_i C_i V_R + C_F V_{res} \]

By conservation of charge we get,
\[V_{res} = \frac{\sum_{i=1}^{2^M} C_i V_{in} - \sum_{i=1}^{2^M-1} B_i C_i V_R}{C_F} \]

where, \(B_i = 1 \) if \(T_i = 1 \) and \(B_i = -1 \) if \(T_i = 0 \).

If \(C_F = C_i \) then gain \(\approx 2^M \), if \(C_F = 2C_i \) then gain \(\approx 2^{M-1} \).
Sources of Errors in Pipelined ADC

- Comparator Offset
- Capacitor Mismatch
- Op Amp Gain
- Op Amp Input Capacitance

- Op Amp Nonlinearity
- Op Amp Offset
- Charge Injection Mismatch
- Op Amp and kT/C Noise
Comparator Offset

- Comparator offset saturates the later stage.
- Redundancy can overcome this.
Overcoming Comparator Offset (1)

\[
V_{res} = \frac{\sum_{i=1}^{2^M} C_i V_{in} - \sum_{i=1}^{2^M-1} B_i C_i V_R}{C_F}
\]

If \(C_F = 2C_i \) then gain \(\approx 2^{M-1} \) resulting in comparator offset tolerance of \(\pm V_{REF}/2^M \).

\(C_F = C_i, M=3 \) \(\rightarrow \) No redundancy

\(C_F = 2C_i, M=3 \) \(\rightarrow \) Redundancy
Overcoming Comparator Offset (2) – 1.5-bit Architecture –

\[V_{OUT} = \frac{(C_S + C_F)V_{IN} - kC_SV_{REF}}{C_F} \]

where, \(k = \pm 1, 0 \)

Overcoming Comparator Offset (3) – 1.5-bit Architecture –

\[V_{OUT} = \frac{C_s}{C_F} (V_{in} - kV_{REF}) \]

where, \(k = \pm 1/2, 0 \)
Capacitor Mismatch

\[V_{res} = \frac{\sum_{i=1}^{2^M} C_i V_{in} - \sum_{i=1}^{(2^M-1)} B_i C_i V_{REF}}{C_F} \]

where, \(B_i = 1 \) if \(T_i = 1 \) and \(B_i = -1 \) if \(T_i = 0 \)

M=2, i.e., 2-bit stage

Missing Levels

Missing Codes
Finite Op amp Gain

\[V_{res} = \frac{\sum_{i=1}^{2^M} C_i V_{in} + \sum_{i=1}^{(2^M-1)} B_i C_i V_{REF}}{C_F + (C_F + C_P + \sum_{i=1}^{2^M} C_i) \frac{1}{A}} \]

where, \(B_i = 1 \) if \(T_i = 1 \) and \(B_i = -1 \) if \(T_i = 0 \) and \(A = \)

M=2, i.e., 2-bit stage

Finite op amp gain

Missing Codes

Workshop on Analog VLSI 2017
Op amp Nonlinearity (1)

- Weakly nonlinear op amp open-loop input-output characteristic can be given by a 3rd order polynomial,
 \[V_{OUT} = \alpha_1 V_{in} + \alpha_2 V_{in}^2 + \alpha_3 V_{in}^3 \]
- The inverse can be given by another polynomial
 \[V_{in} = \beta_1 V_{out} + \beta_2 V_{out}^2 + \beta_3 V_{out}^3 \]

where, \(\beta_1 = \frac{1}{\alpha_1} \), \(\beta_2 = \frac{-\alpha_2}{\alpha_1^3} \), and \(\beta_3 = \frac{2\alpha_2}{\alpha_1^5} - \frac{\alpha_3}{\alpha_1^4} \)

The input-output characteristic of the MDAC can be obtained by solving the following non-linear equation:

\[
\sum_{i=1}^{2^M} c_i V_{in} = \sum_{i=1}^{(2^M - 1)} c_i V_{REF} + c_F V_{res} - \left(\beta_1 V_{out} + \beta_2 V_{out}^2 + \beta_3 V_{out}^3 \right) \left(c_F + c_P + \sum_{i=1}^{2^M} c_i \right)
\]
Thermal Noise Consideration (1)

- Signal-to-noise ratio of an ADC is given by,

\[
SNR = 10 \log_{10} \left(\frac{P_{\text{sig}}}{(Q_N + N_T)} \right)
\]

where,

- \(P_{\text{sig}} = \) signal power = \(\frac{V_{p-p}^2}{8} \) (for input \(V_{\text{in}} = \frac{V_{p-p}}{2} \sin(2\pi ft) \))
- \(Q_N = \frac{\Delta^2}{12} \)
- \(N_T = \) Input referred thermal noise power of the ADC
- \(\Delta = \frac{V_{p-p}}{2^N} \), where \(N = \) ADC resolution.

- SNR of Semiconductor ADCs are limited by thermal noise of:
 - Switches
 - Op amps

- Switch thermal noise can be minimized by using large capacitors. The thermal noise of the switches is given by “\(kT/C \)”, where \(k = 1.38 \times 10^{-23} \), \(T = \)Temperature in \(K \), and \(C \) is the sampling capacitor.

- Op amp thermal noise can be minimized by burning more current.
It is costly in terms of power, area, and speed to make input thermal noise smaller than quantization noise for ADC resolution, $N > 10$–bits.

For example: If full-scale ADC input is 1 V, then for a 11-bit ADC the quantization noise power is given by:

$$Q_N = \frac{V_{LSB}^2}{12} = \frac{1}{12} \left(\frac{1}{2^{10}} \right)^2 = (141 \mu V_{rms})^2$$

If thermal noise voltage power (N_T) is same as quantization noise power then the SNR takes a 3 dB hit.

If SNR has to take < 1 dB hit then the $N_T \leq \frac{Q_N}{10}$.

Size of the capacitor required to achieve this for 11–bit system is $2 \, pF$.

For a 12-bit system the capacitor required would be $8 \, pF$ (a large value).

For a 16-bit system the capacitor size would be $2 \, nF$ (almost physically unrealizable on chip).
Ignoring other noise sources if thermal noise is only modeled by \(kT/C \) then the SNR is given by:

\[
SNR = 10\log_{10}\left(\frac{P_{\text{sig}}}{Q\sqrt{N+kT/C}}\right)
\]
Each stage contributes to the thermal noise.

How do we distribute the thermal noise so that the overall input-referred thermal noise is minimized to maximize the SNR?

Let's consider a pipelined ADC built using 1-bit stages (MDAC gain = 2)

Considering only kT/C sampled noise the total input referred noise power:

$$N_T \propto kT \left[\frac{1}{C_1} + \frac{1}{G_1^2 C_2} + \frac{1}{G_1^2 G_2^2 C_3} + \cdots + \frac{1}{G_1^2 \cdots G_{N-1}^2 C_N} \right]$$
Stage Scaling for Optimal Noise (1)

\[N_T \propto kT \left[\frac{1}{C_1} + \frac{1}{G_1^2 C_2} + \frac{1}{G_1^2 G_2^2 C_3} + \cdots + \frac{1}{G_1^2 \cdots G_{N-1}^2 C_N} \right] \]

- If \(C_1 = C_2 = \cdots = C_N \) then backend stages contribute very little noise
 - Wasteful as power \(\propto G_m \propto C \)
- How about scaling by \(2^M \) where \(M \) is the resolution of each stage.
 - Same amount of noise from each stage.
 - Power can be reduced.
Optimum capacitor scaling lies approximately midway between these two extremes.

\[N_T \propto kT \left[\frac{1}{C_1} + \frac{1}{g_1^2 g_2^2} + \frac{1}{g_1^2 g_2^2 g_3^2} + \cdots + \frac{1}{g_1^2 \cdots g_{N-1}^2 C_N} \right] \]
As mentioned earlier optimal scaling is between the two extremes

- Capacitor scaling factor 2^{Mx} where M is the stage resolution.
 - $x=1$ \rightarrow scaling exactly by the stage gain.
Start by assuming capacitors are scaled precisely by stage gain

- For 1-bit stages, capacitors can be scaled by factor of 2
- For 2-bit stages, capacitors can be scaled by a factor of 2^2.

Refine using the first pass circuit simulations by either using:

- MATLAB
- Excel
The output voltage of a pipelined stage is given by

\[V_{OUT} = \sum_{i=1}^{2^M} C_i V_{IN} + \sum_{i=1}^{2^M-1} T_i C_i V_R + \sqrt{V_{n, tot}^2} \]

where \(V_{n, tot}^2 \) is the MS value of the thermal noise of the stage.

\[V_{n, tot}^2 = V_{n, sp}^2 + V_{n, ap}^2 \]

where, \(V_{n, sp}^2 \) and \(V_{n, ap}^2 \) are the MS value of the sample-phase noise and amplification-phase noise, respectively.
The thermal noise of switch resistances R_{on1} and R_{on2} have single-sided PSD of $4kTR_{on1}$ and $4kTR_{on2}$ respectively.

These are filtered by the RC network having a time-constant, $\tau = (R_{on1} + R_{on2})C_S$.

The thermal noise of R_{on3} is filtered by the RC network with time-constant, $\tau = R_{on3}C_F$.

The MS value of the noise charge sampled on C_S and C_F are kTC_S and kTC_F, respectively.

This sampled charge is transferred to the output during the amplification phase producing a noise voltage at the output that has a MS value given by:

$$V_{n,sp}^2 = \frac{kTC_S + kTC_F}{C_S^2 + C_F^2}$$

Bibhudatta Sahoo
Amplification-phase Noise

- Amplification-phase noise has the switch thermal noise and op amp thermal noise.
- MS value of amplification noise is
 \[V_{n,ap}^2 = V_{n,ap,sw}^2 + V_{n,ap,op}^2 \]
- Where, \(V_{n,ap,sw}^2 = \frac{kT}{C_S} \left(\frac{C_S}{C_F} \right)^2 \)
 and \(V_{n,ap,op}^2 \) is the op amp noise.
- Thus, the MS value of the total noise at the output of the MDAC is
 \[V_{n,tot}^2 = \frac{kTC_S + kTC_F}{C_F^2} + \frac{kT}{C_S} \left(\frac{C_S}{C_F} \right)^2 + V_{n,ap,op}^2 \]
- The input-referred noise of the MDAC is
 \[V_{n,inp-ref}^2 = \frac{V_{n,tot}^2}{G} \]
 where \(G = \frac{C_S}{C_F} \), if op amp gain is \(\infty \).

<table>
<thead>
<tr>
<th>Sampling Cap</th>
<th>Load Cap</th>
<th>Switch noise</th>
<th>Op amp noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 pF</td>
<td>800 fF</td>
<td>508.9 (\mu \text{V})</td>
<td>1.01 mV</td>
</tr>
</tbody>
</table>

Bibhudatta Sahoo
Op amp Noise

- The MS value of the output noise for both the single-stage and two-stage op amps is independent of the op amp transconductance.

- The output noise can be minimized by increasing
 - The effective load capacitance C_{eff} for a single stage op amp
 - The compensation capacitor C_c for a two-stage op amp

- However, if the op amp power is not increased, increasing C_c reduces the bandwidth of the closed loop amplifier

\[
\frac{V^2}{V_{n,op}} = \frac{2kT\gamma}{\beta C_{\text{eff}}}
\]

\[
\frac{V^2}{V_{n,op}} = \frac{2kT\gamma}{\beta C_c}
\]

Bibhudatta Sahoo

Workshop on Analog VLSI 2017
Op amp Noise (Cont.)

- For a two-stage op amp to have more than 60° phase margin for a given C_{eff}, power, and bandwidth, $C_c < C_{eff}/2$

- The transconductance of the second stage should be at least 5 to 8 times more than the transconductance of the first stage*.

- Thus, a two-stage op amp is more noisy than a single-stage op amp for a given C_{eff}, power, and bandwidth.

- Although a single-stage op amp is less noisy for a given load, power, and bandwidth, it has limited headroom and has limited applications.

Noise cancellation is a two-step process,
- Faithful reproduction of the thermal noise
- Application of the reproduced thermal noise to the bottom-plate of C_L

An auxiliary path, which uses a single-stage op amp less noisy than a two-stage op amp, faithfully reproduces the noise and removes the signal component.

Auxiliary path capacitors are scaled by a factor of 2 w.r.t. main path capacitors to facilitate this.

Perfect noise cancellation occurs if both the circuits are ideal.

Bibhudatta Sahoo
During sampling phase,

\[Q_{s,a} = 8CV_{IN} \]

During hold phase,

\[Q_{h,a} = \sum_{i=1}^{15} T_i V_R C/2 + V_{OM} C + V_{OA} C_{FA} \]

By charge conservation and substituting the value of output of main MDAC \(V_{OM} \), Auxiliary path output is

\[V_{OA} = \frac{8CV_{IN} - \sum_{i=1}^{15} T_i V_R C/2 - V_{OM} C}{C_{FA}} \]

If \(C_{FM} = 2C \) and \(C_{FA} = C \) then,

\[V_{OA} = -\sqrt{V_{n,tot}^2} \]
Overall Noise Cancellation Technique

- The output of the auxiliary-path is inverted and connected to the top-plate of Stage-2 sampling capacitor which is C_L of 1st-stage.
- Top-plate and bottom-plate of C_1 samples the noise of the main path resulting in noise cancellation.
- In differential implementation inversion is realized by swapping the differential output of the auxiliary-path.
- Thus, the sampled noise as well as the op amp noise of main-path is cancelled \Rightarrow auxiliary path sampled and op amp noise is present ∇.

\[C_1 + C_2 + C_3 + \ldots + C_{16} = C_L \]

Bibhudatta Sahoo
Effect Of Non-Idealities

- Perfect noise cancellation does not happen in the presence of non-idealities such as:
 - Finite op amp gain
 - Input parasitic capacitance of the op amp
 - Op amp offset
- Both main-path MDAC and auxiliary-path DAC contribute to these non-idealities.
- Since the swing at the output of the auxiliary-path op amp is just the thermal noise which is very small, a high-speed single stage moderate gain op amp is used.
Effect of Auxiliary Path Noise

- The auxiliary path also has both sample-phase and amplification-phase noise whose MS values can be defined as:

\[
\frac{V^2_{m,sp,a}}{C_{FA}^2} = \frac{kT C_{SA} + kT C_{FA}}{C_{FA}^2}, \quad \text{and} \quad \frac{V^2_{n,ap,a}}{C_{FA}^2} = \frac{kT C_{SA}}{\beta C_{eff}} + \frac{2kT \gamma}{\beta C_{eff}}.
\]

- Auxiliary-path op amp, being a single-stage op amp, can be designed to be of high-speed and have low noise.

- Table summarizing the noise of the main-path and auxiliary-path for a prototype 4-bit noise-cancelling MDAC designed in IBM 32-nm SOI process that operates from 1.5 V supply at 400 MHz sample-rate and provides a signal swing of ±750 mV in the main-path.

<table>
<thead>
<tr>
<th>Path</th>
<th>Sampling Cap</th>
<th>Load Cap</th>
<th>Switch noise</th>
<th>Op amp noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main-path</td>
<td>4 pF</td>
<td>0.8 pF</td>
<td>508.9 µV</td>
<td>1.01 mV</td>
</tr>
<tr>
<td>Auxiliary-path</td>
<td>2 pF</td>
<td>0.8 pF</td>
<td>752.7 µV</td>
<td>356 µV</td>
</tr>
</tbody>
</table>
If all other parameters are ideal and only the auxiliary path op amp gain is finite, then the auxiliary path output is

\[V_{OA} = \frac{C}{C_{FA} + \sum_{i=1}^{17} C_i / 2 + C_{FA} + C_{PA}} \cdot \left[\left(\frac{1}{2} - \frac{C}{C_{FM}} \right) \left(V_{in} 2^M - \sum_{i=1}^{2^M-1} T_i V_R \right) - \sqrt{V_{n,tot}^2} \right] \]

\[\Rightarrow V_{OA} = \gamma \sqrt{V_{n,tot}^2} \text{ where } \gamma = 1 / (1 + \left(\sum_{i=1}^{17} C_i / 2 + C_{FA} + C_{PA} \right) / A_A C_{FA}) \]

Finite gain and bandwidth of the auxiliary path affects only the noise term and a fraction of the total main-path noise is cancelled.
Effect of Auxiliary Path Op amp Gain and Bandwidth (Cont.)

- Proposed architecture uses a single stage telescopic op amp with open-loop gain, $A_{aux} = 40 \text{ dB} \Rightarrow 7\%$ degradation.

- Due to finite bandwidth the auxiliary-path output does not settle to the value of $\sqrt{V_{n,\text{tot}}^2}$ and thus manifests as gain error too and hence only a fraction of the total main-path noise is cancelled.

- In the proposed design the auxiliary-path op amp was designed to have a bandwidth such that there is < 0.1% degradation in the noise cancellation.

Percentage degradation in the amount of noise cancellation as a function of auxiliary path op amp gain.

Bibhudatta Sahoo
Effect of Capacitor Mismatch

- With capacitor mismatch, the generalized noise cancelling equation becomes

\[
V_{OA} = \frac{V_{in} \sum_{i=1}^{2^M} \left(\frac{(C_i + \Delta C_i)}{2} - (C_i + \Delta C_i) \frac{C}{C_{FM}}\right) - V_R \left(\sum_{i=1}^{2^M-1} \left[T_i \frac{(C_i + \Delta C_i)}{2} + T_i(C_i + \Delta C_i) \frac{C}{C_{FM}}\right]\right)}{C_{FA}} - \sqrt{V_{n,tot,M}^2 C}
\]

- The capacitor mismatch error can be calibrated out using various techniques.

- The fractional mismatch in the \(\sqrt{V_{n,tot}^2}\) term is going to be a small value which hardly affects the overall noise cancellation performance and hence can be ignored.
Simulation Results

- The effectiveness of the proposed noise cancelling technique was validated in simulation by building 12-bit, 14-bit, and 16-bit pipelined ADCs in IBM 32-nm SOI process.
- The ADCs were designed for a sample-rate of 400 MHz.
- The following table summarizes the resolution of the various stages used in the ADCs.

<table>
<thead>
<tr>
<th></th>
<th>Stage-1</th>
<th>Stage-2</th>
<th>Stage-3</th>
<th>Stage-4</th>
<th>Stage-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-bit</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>14-bit</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12-bit</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

- All the stages have a redundancy of 1-bit except for the last stage.

Case-Study

<table>
<thead>
<tr>
<th></th>
<th>Stage-1 Sample-phase Noise</th>
<th>Amplification-phase Input Referred Noise (μV)</th>
<th>Total Input Referred Noise (μV)</th>
<th>SNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{\frac{2kT}{C_s}}$</td>
<td>$\sqrt{\frac{V_{n,1}^2}{2}}$</td>
<td>$\sqrt{\frac{V_{n,2}^2}{2}}$</td>
<td>$\sqrt{\frac{V_{n,3}^2}{2}}$</td>
</tr>
<tr>
<td>16-bit ADC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Cancellation</td>
<td></td>
<td>$C_s = 4 \ pF$</td>
<td>$C_s = 0.8 \ pF$</td>
<td>$C_s = 0.8 \ pF$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.49</td>
<td>128</td>
<td>24.2</td>
</tr>
<tr>
<td>Stage-1 Noise Cancellation</td>
<td></td>
<td>62.42</td>
<td>55.97</td>
<td>24.2</td>
</tr>
<tr>
<td>Stage-1 and 2 Noise Cancellation</td>
<td></td>
<td>62.42</td>
<td>55.97</td>
<td>14.18</td>
</tr>
<tr>
<td>14-bit ADC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Cancellation</td>
<td></td>
<td>$C_s = 4 \ pF$</td>
<td>$C_s = 0.8 \ pF$</td>
<td>$C_s = 0.8 \ pF$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.49</td>
<td>128</td>
<td>24.2</td>
</tr>
<tr>
<td>Stage-1 Noise Cancellation</td>
<td></td>
<td>62.42</td>
<td>55.97</td>
<td>24.2</td>
</tr>
<tr>
<td>Stage-1 and 2 Noise Cancellation</td>
<td></td>
<td>62.42</td>
<td>55.97</td>
<td>14.18</td>
</tr>
<tr>
<td>12-bit ADC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Cancellation</td>
<td></td>
<td>$C_s = 4 \ pF$</td>
<td>$C_s = 0.8 \ pF$</td>
<td>$C_s = 0.8 \ pF$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.49</td>
<td>128</td>
<td>24.2</td>
</tr>
<tr>
<td>Stage-1 Noise Cancellation</td>
<td></td>
<td>62.42</td>
<td>55.97</td>
<td>24.2</td>
</tr>
<tr>
<td>Stage-1 and 2 Noise Cancellation</td>
<td></td>
<td>62.42</td>
<td>55.97</td>
<td>14.18</td>
</tr>
</tbody>
</table>

$V_{n,i}^2 = V_{n,tot,i}^2 \cdot \prod_{k=1}^{N} C_k^2$, $C_s = C_{SM}$ for rows corresponding to no cancellation and $C_s = C_{SA}$ for rows corresponding to noise cancellation.

$V_{in,p-p} = 1.5 \text{ V}$
The first stage of the pipelined ADC should ideally be preceded by a SHA

- MDAC and sub-ADC of the pipelined stage see the same input voltage.

Since the SHA has a gain of 1 the total input referred noise increases:

\[N_T \propto kT \left[\frac{1}{C_{IN,1P}} \cdot \frac{1}{C_1} + \frac{1}{G_1^2 C_2} + \frac{1}{G_1^2 G_2^2 C_3} + \cdots + \frac{1}{G_1^2 \cdots G_{N-1}^2 C_N} \right] \]

SHA can burn up to 1/3 of total ADC power
SHA-less Front-end

- Removing the front-end SHA reduces the power consumption.
- Leads to timing mismatch between the signal sampled in the MDAC and Flash.

[Chang 2004]
Any mismatch between the “main sampling path” and “flash ADC path” results in different voltages being sampled on “C” and “C/α”.

The mismatch can be translated to time-constant mismatch (\(\tau\)).

For a signal of amplitude “\(A\)” and frequency “\(f_{in}\)” the difference in voltage sampled on “C” and “C/α” is:

\[\Delta V = 2\pi f_{in} A\tau \]

Match the flash and MDAC paths.

[Match the flash and MDAC paths.]

[SHA-less Architecture (2)]

[Diagram showing main sampling path and flash ADC path with elements that can have mismatch.]

[Mehr 2000]
Pipeline ADC
- Area, Power, Speed, Resolution Optimization-
System Specifications to Circuit
For a given ADC resolution, the number of stages and number of bits resolved in each stage determines:

- power consumption
- area
1.5-bit Stage

- Feedback factor = $\frac{1}{2}$.
- Offset correction range = $\pm V_{\text{REF}}/4$ (i.e. ± 150 mV for $V_{\text{REF}}=0.6V$).
- Settling Requirement on the op amp reduced by 1-bit.
- Input referred noise = $\frac{1}{2}$ of output noise.

\[V_{\text{OUT}} = \frac{(C_S + C_F) V_{\text{IN}} - kC_S V_{\text{REF}}}{C_F - \left(\frac{kC_S + C_X + C_F}{A}\right)} \]
2.5-bit Stage

- Feedback factor = 1/4.
- Offset correction range = ±V_{REF}/8 (i.e. ±75 mV for V_{REF}=0.6V).
- Settling Requirement on the op amp reduced by 2-bits.
- Input referred noise is 1/4 of output noise.
- Input-Output transfer function is:

\[
V_{OUT} = \sum_{i=1}^{8} C_i V_{IN} - \sum_{i=0}^{5} C_{i+3} b_i V_{REF} \left/ \frac{C_1 + C_2 + C_X}{A} \right.
\]
Feedback factor = 1/8.

Offset correction range = ±V_{REF}/16 (i.e. ±37.5 mV for V_{REF}=0.6V).

Settling Requirement on the op amp reduced by 3-bits.

Input referred noise is 1/8 of output noise.

Input-Output transfer function is:

\[
V_{OUT} = \frac{\sum_{i=1}^{16} C_i V_{IN} - \sum_{i=0}^{13} C_{i+3} b_i V_{REF}}{C_1 + C_2 + \frac{C_1 + C_2 + C_X}{A}}
\]
For resolutions more than 10-bits it is better to resolve more bits in the first stage:
- relaxing op amp settling.
- capacitor matching.
- reducing capacitance \(\Rightarrow\) input referred noise is reduced.
- DOES NOT relax the op amp open loop DC gain requirement (more later).
Why not resolve more bits in 1st Stage?

- Any mismatch between the “main sampling path” and “flash ADC path” results in different voltages being sampled on “C” and “C/α”.
- The mismatch can be translated to time-constant mismatch (τ).
- The difference in voltage should be within the offset correction range of the Flash ADC.
- Resolving more bits in the 1st stage reduces the offset-correction range and hence could result in missing codes.
- Offset correction range should include:
 - Comparator offsets in the flash.
 - Time constant mismatch (τ).
- For a signal of amplitude “A” and frequency “f_{in}” the difference in voltage sampled on “C” and “C/α” is:
 - $\Delta V=2\pi f_{in} A \tau$
Residue voltage V_{ri} has to settle to $LSB/2$ of the backend-ADC.

Gain error:

$$\frac{V_{\varepsilon}}{V_{ideal}} \leq \frac{1}{1 + \beta A_{DC} 2^{(P-N_i+1)}}$$

Resolution reduces but the feedback factor also reduces by the same amount. \(\Rightarrow\) DC gain is defined by the resolution of the ADC and not the resolution of the backend ADC that follows.

The above holds true for the op amps in the later stages of the pipeline.
Some expressions used for architecture optimization i.e. number of pipeline stages and number of bits/stage:

- Settling time for N-bit accuracy:
 \[t_{\text{settle}} = (N + 1) \cdot \tau \cdot \ln(2) \]

- Two stage op amp poles and unity gain bandwidths:
 \[\omega_{p1} = \frac{1}{R_1 g_m R_2 C_C}, \quad \omega_{p2} = \frac{g_m}{C_L}, \quad \omega_u = \frac{g_m}{C_C}, \quad \text{and} \quad \omega_{p2} \approx 5 \cdot \omega_u \]

- Variance of input referred sampled noise:
 \[\sigma_{IN}^2 = 2 \left[\frac{kT}{C_1} + \sum_{i=2}^{N} \frac{kT}{C_i} \frac{1}{G_{i-1}^2} \right] + \sigma_{OP}^2 + \sigma_{REF}^2 + \sigma_{JITTER}^2 \]

 where, $C_i =$ sampling caps in each stage, and $G_i =$ gain of each stage.

- 2\text{nd} stage of the op amp is a common source stage. For maximum output swing at the highest speed typical gain in the 2\text{nd} stage is ≈ 10.

- Overdrive voltage to maximize swing is chosen to be around $V_{OV}=150 \text{ mV}$ and hence current in each branch in the two stages are $I_{D1} = g_m \cdot V_{OV}/2$ and $I_{D2} = g_m \cdot V_{OV}/2$.
Signal swing = ±750 mV for 1.5 V supply
Resolution = 12-bits (determines quantization noise)

- $f_{\text{MAX}, \text{IN}} = 100 \text{ MHz}$
- $f_s = 200 \text{ MHz}$
- $t_{\text{slewing}} = 0.5 \text{ ns}$
- $t_{\text{non - overlap}} = 0.2 \text{ ns}$
- $t_{\text{settling}} = 1.8 \text{ ns}$

Noise Budget:
- Quantization Noise
- Sampled Thermal Noise
- Op amp Noise
- Reference Noise
- Jitter Noise
- Input signal buffer Noise
The variance of jitter voltage is given by:

\[
\sigma_{\text{jitter}} = \sqrt{2} \pi t_j f_{\text{in}} A
\]

where,
- \(t_j \) = variance of jitter.
- \(f_{\text{in}} \) = frequency of the input signal.
- \(A \) = amplitude of the input signal.

For maximum input frequency of 100 MHz and jitter limited SNR of 80 dB, the required rms jitter is 700 fs.
Noise Budget

<table>
<thead>
<tr>
<th>Noise Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSB (Δ)</td>
<td>$V_{p-p} = \frac{1.5}{2^{12}} = 366 \mu V$</td>
</tr>
<tr>
<td>Reference Noise</td>
<td>$90 \mu V$</td>
</tr>
<tr>
<td>Op Amp Noise</td>
<td>$120 \mu V$</td>
</tr>
<tr>
<td>Sampled Noise (kT/C)</td>
<td>$64 \mu V$ (2 pF)</td>
</tr>
<tr>
<td>Jitter Noise</td>
<td>$66 \mu V$ (200 fs RMS jitter)</td>
</tr>
<tr>
<td>Overall SNR</td>
<td>67.8 dB (in 100 MHz band)</td>
</tr>
</tbody>
</table>
Architecture Optimization (5)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Architecture</th>
<th>Sampling Capacitor (pF)</th>
<th>Capacitance switching to Reference (pF)</th>
<th>Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9, 1.5-bit stages, 3-bit flash</td>
<td>3.0</td>
<td>4.0</td>
<td>138</td>
</tr>
<tr>
<td>2</td>
<td>4, 2.5-bit stages, 4-bit flash</td>
<td>1.5</td>
<td>2.5</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>3, 3.5-bit stages, 3-bit flash</td>
<td>1.0</td>
<td>2.0</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>2.5-bit 1st stage, 6, 1.5-bit stages, and 4-bit flash</td>
<td>2.0</td>
<td>2.5</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>3.5-bit 1st stage, 5, 1.5-bit stages, and 4-bit flash</td>
<td>1.0</td>
<td>1.5</td>
<td>50</td>
</tr>
</tbody>
</table>

- Optimization based on the following:
 - $V_{in(p-p)(diff)} = 1.5$ V
 - Quantization noise is at 12-bit level.
 - Thermal noise limited to 66 dB in 100MHz band.

- Architecture 5 is optimal.
Scaling Trend
- Impact On Data Converter Design -
Transconductance and Intrinsic Gain

- Transconductance is for all practical purposes independent of technology node.
- For velocity saturated channel:
 \[I_d = W C_{ox} V_{eff} V_s \]
 \[\Rightarrow g_m = W C_{ox} V_s \]
- With constant field scaling if \(W \) gets scaled down by a factor \("k" \) then \(C_{ox} \) gets scaled up by a factor of \("k" \) \(\Rightarrow g_m \) stays constant.
- Intrinsic gain reduces as technology scales down \(\Rightarrow \) the maximum intrinsic gain in 65-nm < 20% of the maximum intrinsic gain in 180-nm
Potential Speed Improvement

- By scaling down potential speed improvement can be obtained.
- Almost 5 times speed improvement is obtained in 65-nm process over 180-nm process.

\[f_T = \frac{g_m}{2\pi(C_{gs} + C_{gd} + C_{db})} \]

Courtesy: http://www.eecg.toronto.edu/cider/presentations/ytterdal.pdf

Workshop on Analog VLSI 2017

Bibhudatta Sahoo
Transistor Efficiency

- Maximum efficiency is nearly independent of technology.

```
Minimum gate length; \( W/L = 5; \ V_{ds} = 1V \)

\[ g_m / I_D \]  [1/V]

\[ 1.0E-12 \quad 1.0E-10 \quad 1.0E-8 \quad 1.0E-6 \quad 1.0E-4 \quad 1.0E-2 \]

- Does not scale with technology

 Courtesy: http://www.eecg.toronto.edu/cider/presentations/yterdal.pdf

Bibhudatta Sahoo`

Workshop on Analog VLSI 2017
Transistor Linearity

Increased $g_{ds}$ nonlinearity makes design of linear op amp a challenge in scaled down CMOS.

Courtesy: http://www.eecg.toronto.edu/cider/presentations/ytterdal.pdf
Gate Leakage and Noise

- Gate leakage current dominated by tunneling current.
- Designing highly linear sample-and-hold becomes very challenging as the held value may leak out.
- Noise factor $\gamma$ increases with reduced channel length.
- Reduces the SNR of the data converters.

Gate Leakage

Gate Leakage current dominated by tunneling current.

Becomes worse with scaling 😞

Noise

Noise factor $\gamma$ increases with reduced channel length.

Noise

$\gamma$ Increases with scaling 😞

 Courtesy: http://www.eceg.toronto.edu/cider/presentations/ytterdal.pdf

Gate Leakage current dominated by tunneling current.

Designing highly linear sample-and-hold becomes very challenging as the held value may leak out.

Noise factor $\gamma$ increases with reduced channel length.

Reduces the SNR of the data converters.
Increased spread makes the design of op amps and other precision circuits very challenging.
Supply Voltage Scaling (I)

- Supply voltage scaling more aggressive compared to threshold voltage scaling
  - To minimize leakage
- Digital $V_{DD}$ scaling more than Analog $V_{DD}$ scaling.

- Majority of ADC designs have $V_{DD} > 1$ V.
- However, some ADCs have used $V_{DD}$'s which are commensurate with digital $V_{DD}$⇒ especially VCO based architectures.

Bibhudatta Sahoo
Supply Voltage Scaling (II)

- Scaling of supply voltage $\Rightarrow$ reduction in signal swing $\Rightarrow$ reduction in SNR.
- Achieving an SNR of “$x$” dB in 10 kHz band is not as attractive as achieving the same in 1 GHz band.
- Relative noise floor $= - (SNR + 10\cdot\log_{10}(BW))$
ADC Energy Vs Digital Energy Example

- Standard digital gates (NAND2) in 0.13mm CMOS consume about 6nW/Gate/MHz
  - Energy/Gate = 6fJ
- State-of-the-art 10-bit ADC consumes 1mW/MSample/sec
  - Energy/Conversion = 1nJ
- Energy equivalent number of gates
  - 1nJ/6fJ = 166,666

For SNRs < 50 dB additional digital processing is expensive.

For SNRs > 50 dB using few tens of thousands of gates has hardly any impact on overall energy.


Bibhudatta Sahoo
Calibration : A Necessity
Why Calibrate?

Basic Pipeline Stage

- As technology scales it is difficult to get:
  - get high op amp gain to
    1. remove gain error
    2. suppress nonlinearity
  - low op amp offset.
  - capacitor matching to remove DAC nonlinearity.

- For example, op amp gain in a 12-bit system should exceed $12000 \approx 81$ dB.

$$A_1 = \frac{3(1 - 2^{-(N+1)})}{2^{-(N+1)}}$$
Current ADC Design Trends

- Choose capacitors to satisfy kT/C noise, not matching.
- Choose op amp with high swing
  - kT/C noise relaxed
  - power consumption reduced.
  - Relaxes op amp linearity requirement
- Choose best trade-off between speed, power, and noise of op amp regardless of its gain.
- Digitally correct for everything!
How to Calibrate?

Inverse Operator estimation can be done in:
- Background
- Foreground
Capacitor Mismatch Calibration
Comparator Forcing Based Calibration

\[ V_{res} = \alpha V_{in} + \beta_j V_R \]

where,

\[ \alpha = \frac{\sum_{i=1}^{2^M} C_i}{C_{eq}}, \]
\[ \beta_j = \frac{\sum_{i=1}^{2^M-1} T_i C_i V_R}{C_{eq}} \]

and \[ C_{eq} = C_F + \frac{1}{A} \left( C_F + \sum_{i=1}^{2^M} C_i + C_P \right) \]

In other words,

\[ D_{1,b} - D_{1,a} = \beta_1 - \beta_2 \]
\[ D_{2,b} - D_{2,a} = \beta_2 - \beta_3 \]
\[ \vdots \]
\[ D_{15,b} - D_{15,a} = \beta_{15} - \beta_{16} \]
Computation of $\beta_j$ (II)

\[
\begin{align*}
D_{1,b} - D_{1,a} &= \beta_1 - \beta_2 \\
D_{2,b} - D_{2,a} &= \beta_2 - \beta_3 \\
\vdots \\
D_{15,b} - D_{15,a} &= \beta_{15} + \beta_1
\end{align*}
\]

\[
\begin{bmatrix}
1 & -1 & 0 & \cdots & 0 \\
0 & 1 & -1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 0 & \cdots & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_{15}
\end{bmatrix}
= 
\begin{bmatrix}
D_{1,b} - D_{1,a} \\
D_{2,b} - D_{2,a} \\
\vdots \\
D_{15,b} - D_{15,a}
\end{bmatrix}
\]

In other words,

\[
\begin{bmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_{15}
\end{bmatrix}
= \frac{1}{2}
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
-1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
D_{1,b} - D_{1,a} \\
D_{2,b} - D_{2,a} \\
\vdots \\
D_{15,b} - D_{15,a}
\end{bmatrix}
\]

$\beta_j$’s can be calculated using adders and right shifts.


The input output characteristic of a 4-bit stage is:

$$V_{OUT} = \frac{\sum_{m=1}^{16} C_m V_{IN} - \sum_{m=1}^{16} C_m A_{m,j} V_R}{C_F + C_P + \sum_{m=1}^{16} C_m A}$$

$$\Rightarrow V_{OUT} = \alpha V_{IN} - \frac{\sum_{m=1}^{15} C_m A_{m,j} V_R}{C_F + C_P + \sum_{m=1}^{16} C_m A}$$

$$\Rightarrow V_{OUT} = \alpha V_{IN} - \beta_j V_R,$$

where $\beta_j = \frac{\sum_{m=1}^{15} C_m A_{m,j} V_R}{C_F + C_P + \sum_{m=1}^{16} C_m}$ and $\alpha = \frac{\sum_{r=1}^{16} C_m}{C_F + C_P + \sum_{m=1}^{16} C_m}$.

Dividing both sides by $V_R$ we get,

$$D_{BE} = \alpha D_{IN} - \beta_j$$

$$\Rightarrow D_{IN} = \frac{D_{BE}}{\alpha} + \frac{\beta_j}{\alpha}$$

Bibhudatta Sahoo
Capacitor Mismatch Calibration (2)

Region 1: \( D_{BE1} = \alpha D_{IN} + \left( \frac{C_1 + C_2 + \cdots + C_{15}}{C_F + C_F + \sum_{i=1}^{16} C_i} \right) = \alpha D_{IN} - \beta_1 \)

Region 2: \( D_{BE2} = \alpha D_{IN} - \left( \frac{C_1 - (C_2 + \cdots + C_{15})}{C_F + C_F + \sum_{i=1}^{16} C_i} \right) = \alpha D_{IN} - \beta_2 \)

Region 3: \( D_{BE3} = \alpha D_{IN} - \left( \frac{C_1 + C_2 - (C_3 + \cdots + C_{15})}{C_F + C_F + \sum_{i=1}^{16} C_i} \right) = \alpha D_{IN} - \beta_3 \)

Region 15: \( D_{BE15} = \alpha D_{IN} - \left( \frac{C_1 + C_2 + \cdots + C_{14} - C_{15}}{C_F + C_F + \sum_{i=1}^{16} C_i} \right) = \alpha D_{IN} - \beta_{15} \)

Region 16: \( D_{BE16} = \alpha D_{IN} - \left( \frac{C_1 + C_2 + \cdots + C_{15}}{C_F + C_F + \sum_{i=1}^{16} C_i} \right) = \alpha D_{IN} + \beta_1 \)

\( CR = \) Correction Range

Bibhudatta Sahoo
The digital output goes from 0 to 15 when the input changes from $-V_R$ to $+V_R$.

Apply $V_j$ close to the comparator threshold and force the flash ADC output so that the residue is once in region $j$ and then in region $(j+1)$.

The redundancy/offset correction range in the architecture prevents the ADC from clipping.

The backend ADC gives two different codes for the same input voltage.

Bibhudatta Sahoo
Applying $V_j$ to the ADC in region $j$ we get,

$$D_j = \frac{D_{BE,j}}{\alpha} + \frac{\beta_j}{\alpha}$$

Similarly applying $V_j$ and forcing the ADC to be in region $(j+1)$ we get,

$$D_{j,f} = \frac{D_{BE,j,f}}{\alpha} + \frac{\beta_{j+1}}{\alpha}$$

Since, same voltage is applied we can equate both of them:

$$D_{BE,j,f} - D_{BE,j} = \beta_j - \beta_{j+1}$$

which is not dependent on gain error.

Repeat the above steps for $j=1$ to $15$. 

Bibhudatta Sahoo
Capacitor Mismatch Calibration (5)

Thus we end up with:

\[
\begin{align*}
D_{BE,1,f} - D_{BE,1} &= \beta_1 - \beta_2 \\
D_{BE,2,f} - D_{BE,2} &= \beta_2 - \beta_3 \\
D_{BE,3,f} - D_{BE,3} &= \beta_3 - \beta_4 \\
D_{BE,4,f} - D_{BE,4} &= \beta_4 - \beta_5 \\
D_{BE,5,f} - D_{BE,5} &= \beta_5 - \beta_6 \\
D_{BE,6,f} - D_{BE,6} &= \beta_6 - \beta_7 \\
D_{BE,7,f} - D_{BE,7} &= \beta_7 - \beta_8 \\
D_{BE,8,f} - D_{BE,8} &= \beta_8 - \beta_9 \\
D_{BE,9,f} - D_{BE,9} &= \beta_9 - \beta_{10} \\
D_{BE,10,f} - D_{BE,10} &= \beta_{10} - \beta_{11} \\
D_{BE,11,f} - D_{BE,11} &= \beta_{11} - \beta_{12} \\
D_{BE,12,f} - D_{BE,12} &= \beta_{12} + \beta_{13} \\
D_{BE,13,f} - D_{BE,13} &= \beta_{13} - \beta_{14} \\
D_{BE,14,f} - D_{BE,14} &= \beta_{14} - \beta_{15} \\
D_{BE,15,f} - D_{BE,15} &= \beta_{15} + \beta_1
\end{align*}
\]

\[
\begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_1 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_2 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_3 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_4 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_5 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_6 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_9 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & \beta_{10} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & \beta_{11} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & \beta_{12} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & \beta_{13} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & \beta_{14} \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \beta_{15}
\end{bmatrix}
\]

Solving for \( \beta_j \) is straightforward and does not require multiplication.

Bibhudatta Sahoo
Thus $\beta_j$ can be obtained as follows without the need of multipliers:

$$[\beta_j] = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} D_{BE,1.f} - D_{BE,1} \\ D_{BE,2.f} - D_{BE,2} \\ D_{BE,3.f} - D_{BE,3} \\ D_{BE,4.f} - D_{BE,4} \\ D_{BE,5.f} - D_{BE,5} \\ D_{BE,6.f} - D_{BE,6} \\ D_{BE,7.f} - D_{BE,7} \\ D_{BE,8.f} - D_{BE,8} \\ D_{BE,9.f} - D_{BE,9} \\ D_{BE,10.f} - D_{BE,10} \\ D_{BE,11.f} - D_{BE,11} \\ D_{BE,12.f} - D_{BE,12} \\ D_{BE,13.f} - D_{BE,13} \\ D_{BE,14.f} - D_{BE,14} \\ D_{BE,15.f} - D_{BE,15} \end{bmatrix}$$

Combining the bits with appropriate $\beta_j$:
- Flash ADC output tells us which region the analog voltage is in.
- The above information can be used appropriately combine the bits.
Gain Calibration for Multi-bit MDAC
Computation of $\alpha$

\[ \alpha = \frac{C_1 + \cdots + C_{16}}{C_{eq}} \]

- Need to obtain \( \frac{C_1}{C_{eq}}, \frac{C_2}{C_{eq}}, \ldots, \frac{C_{16}}{C_{eq}} \).
- Fortunately \( \beta_{j+1} - \beta_j = \frac{C_1 + \cdots + C_{j+1}}{C_{eq}} - \frac{C_1 + \cdots + C_j}{C_{eq}} \)
  \[ = \frac{C_{j+1}}{C_{eq}} \]
- We already have these values from previous measurements
  \[ D_{1,b} - D_{1,a} = \beta_1 - \beta_2 \]
  \[ D_{2,b} - D_{2,a} = \beta_2 - \beta_3 \]
  \[ \vdots \]
  \[ D_{15,b} - D_{15,a} = \beta_{15} + \beta_1 \]

Bibhudatta Sahoo
Computation of $C_{16}/C_{eq}$

- Swap $C_1$ and $C_{16}$:

\[
\Rightarrow \beta_{16} = \frac{C_2 + \cdots + C_{16}}{C_{eq}} \Rightarrow \frac{C_{16}}{C_{eq}} = \beta_{16} - \beta_{15}
\]

- Thus, $\alpha = \frac{C_1 + \cdots + C_{16}}{C_{eq}}$ is obtained.
Gain Error Calibration (1)

- We can obtain a similar set of measurements by connecting $C_{16}$ to $\pm V_R$ (controlled by $A_1$) and $C_1$ to $V_{CM}$.
- Instead of $\beta_1$ to $\beta_{15}$ we can define $\eta_1$ to $\eta_{15}$ as shown on the side.
- Similarly we can solve for $\eta_1$ to $\eta_{15}$ by matrix inversion.

Region 1: $D_{BE} = \alpha D_{IN} + \left( \frac{C_{16} + C_2 + \cdots + C_{15}}{C_F + C_P + \sum_{i=1}^{16} C_i} \right) = \alpha D_{IN} - \eta_1$

Region 2: $D_{BE} = \alpha D_{IN} - \left[ \frac{C_{16} - (C_2 + \cdots + C_{15})}{C_F + C_P + \sum_{i=1}^{16} C_i} \right] = \alpha D_{IN} - \eta_2$

Region 3: $D_{BE} = \alpha D_{IN} - \left[ \frac{C_{16} + C_2 - (C_3 + \cdots + C_{15})}{C_F + C_P + \sum_{i=1}^{16} C_i} \right] = \alpha D_{IN} - \eta_3$

Region 15: $D_{BE} = \alpha D_{IN} - \left[ \frac{C_{16} + C_2 + C_3 + \cdots - C_{15}}{C_F + C_P + \sum_{i=1}^{16} C_i} \right] = \alpha D_{IN} - \eta_{15}$

Region 16: $D_{BE} = \alpha D_{IN} - \left[ \frac{(C_{16} + C_2 + C_3 + \cdots + C_{15})}{C_F + C_P + \sum_{i=1}^{16} C_i} \right] = \alpha D_{IN} + \eta_1$
Gain Error Calibration (2)

- We can rewrite $\beta_1$ to $\beta_{15}$ in terms $C_1$ to $C_{16}$ as shown below:

$$\begin{bmatrix}
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1
\end{bmatrix} \begin{bmatrix}
C_1 \\
C_2 \\
C_3 \\
C_4 \\
C_5 \\
C_6 \\
C_7 \\
C_8 \\
C_9 \\
C_{10} \\
C_{11} \\
C_{12} \\
C_{13} \\
C_{14} \\
C_{15} \\
C_{16}
\end{bmatrix} = \begin{bmatrix}
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\beta_5 \\
\beta_6 \\
\beta_7 \\
\beta_8 \\
\beta_9 \\
\beta_{10} \\
\beta_{11} \\
\beta_{12} \\
\beta_{13} \\
\beta_{14} \\
\beta_{15}
\end{bmatrix}$$

- Similarly, we can rewrite $\eta_1$ to $\eta_{15}$ in terms $C_2$ to $C_{16}$.

- Solving the two matrices we can obtain $C_i/(C_F-C_X)$ where, for $i=1$ to $16$.

- Gain error, $\alpha = \sum_{i=1}^{16} \frac{C_i}{C_F-C_X}$

Bibhudatta Sahoo
Gain Error Calibration – 1.5 bit stages

- Backend stages ➔ need gain error calibration.

- Perturbation based calibration [1]:
  - Applying $V_{IN}$ we get $D_0$ and $D_{BE0}$.
  - Applying $(V_{IN} + \Delta)$ we get $D_1$ and $D_{BE1}$.
  - Applying $\Delta$ we get $D_0$ and $D_{BE\Delta}$.
  - $V_{IN}$ and $(V_{IN} + \Delta)$ should produce different codes.

- Thus, gain error $\gamma$ is obtained as follows:

$$
(V_{IN} + \Delta) - V_{IN} - \Delta = 0
$$

$$
\Rightarrow D_1 + \gamma D_{BE1} - D_0 - \gamma D_{BE0} - D_0 - \gamma D_{BE\Delta} = 0
$$

$$
\Rightarrow \gamma = \frac{D_1}{D_{BE0} + D_{BE\Delta} - D_{BE1}}
$$


Bibhudatta Sahoo
Gain Calibration for 1.5-bit Non-flip-around MDAC
1.5-Bit Stages

\[ V_{\text{res}} = \frac{C_S}{C_F + \frac{C_S + C_F + C_P}{A_0}}(V_{\text{in}} - KV_{\text{REF}}) \]

\[ D_{\text{in}} = K + \frac{1}{\alpha} D_{BE} \]

where, \[ \alpha = \frac{C_S}{C_F + \frac{C_S + C_F + C_P}{A_0}} \]

is the gain.

- \( C_S \) and \( C_F \) cannot be swapped to obtain gain as it would lead to over-range.
Calibration Algorithm* (1.5-Bit Stages)

- Apply $\Delta V \approx 10 \text{ mV}$
- Apply $V_{\text{REF}}/4$
- Apply $V_{\text{REF}}/4 + \Delta V$

1.5-Bit Stages - Computing Inverse Gain (1/\(\alpha\))

- Apply \(\Delta V\)
  \[ D_a = D_{sub,a} + \frac{1}{\alpha} D_{BE,a} \]

- Apply \(V_{REF}/4\), force comparator output to be “0”
  \[ D_b = D_{sub,b} + \frac{1}{\alpha} D_{BE,b} \]

- Apply \((V_{REF}/4+\Delta V)\), force comparator output to be “1”
  \[ D_c = D_{sub,c} + \frac{1}{\alpha} D_{BE,c} \]

Inverse Gain: \( \frac{1}{\alpha} = \frac{D_{sub,c}}{D_{BE,a} + D_{BE,b} - D_{BE,c}} \)

- Obtained using Newton-Raphson iterative method instead of division.

Bibhudatta Sahoo
Gain Calibration for 1.5-bit Flip-around, 2.5-bit, etc. MDAC
Gain Calibration for 1.5-bit Flip-around MDAC (1)

\[ V_{out} = \frac{C_1 + C_2}{C_2 + \frac{C_1 + C_2 + C_P}{A}} V_{in} - \frac{c_1}{C_2 + \frac{C_1 + C_2 + C_P}{A}} KV_R, \text{ where } K = \pm 1, 0 \]

\[ \Rightarrow V_{out} = \alpha V_{in} - K\beta V_R, \text{ where } \alpha = \frac{c_1 + C_2}{C_2 + \frac{C_1 + C_2 + C_P}{A}}, \text{ and } \beta = \frac{c_1}{C_2 + \frac{C_1 + C_2 + C_P}{A}} \]

- \( \beta \) can be solved by applying \( V_{T_1} \) or \( V_{T_2} \) and forcing the corresponding comparator to “1” or “0”.

- Unlike, an N-bit architecture as mentioned earlier we cannot swap the capacitors here to solve for \( \alpha \).

- Swapping capacitors changes the denominator \( C_2 + \frac{C_1 + C_2 + C_P}{A} \) to \( C_1 + \frac{C_1 + C_2 + C_P}{A} \)

* C. Ravi, V. Sarma, and B. Sahoo, “IEEE NEWCAS, June 2015
Gain Calibration for 1.5-bit Flip-around MDAC (2)

\[ V_{out} = \frac{c_1+c_2}{c_2+c_1+c_2+c_p} V_{in} - \frac{c_1}{c_2+c_1+c_2+c_p} K V_R, \text{ where } K = \pm 1, 0 \]

\[ \Rightarrow V_{out} = \alpha V_{in} - K \beta V_R, \text{ where } \alpha = \frac{c_1+c_2}{c_2+c_1+c_2+c_p}, \text{ and } \beta = \frac{c_1}{c_2+c_1+c_2+c_p} \]

- Applying \( V_R \) the back-end ADC output can be given as:

\[ V_{out} = \alpha V_R - \beta V_R \Rightarrow V_{out} = \frac{c_2}{c_2+c_1+c_2+c_p} V_R \Rightarrow D_{BE} = \frac{c_2}{c_2+c_1+c_2+c_p} \]

- The \( \beta \) obtained using the comparator forcing algorithm can be added to the above \( D_{BE} \) measurement to obtain \( \alpha \)

* C. Ravi, V. Sarma, and B. Sahoo, “IEEE NEWCAS, June 2015

Bibhudatta Sahoo
Comparator forcing based calibration technique is used to obtain $\beta_1$ to $\beta_6$.

Just as in 1.5-bit flip-around topology swapping capacitor changes the denominator and hence cannot be used to solve for the gain $\alpha$.

Applying the full-scale input to the MDAC and digitizing the output using the backend we obtain,

$$D_{BE} = \frac{C_7 + C_8}{C_7 + C_8 + \sum_{i=1}^{8} \frac{C_i + C_p}{A}}$$

Now, $\beta_6 = \frac{\sum_{i=1}^{6} C_i}{C_7 + C_8 + \sum_{i=1}^{8} \frac{C_i + C_p}{A}}$.

$\alpha = D_{BE} + \beta_6$

Can be extended to 3.5-bit.

* C. Ravi, V. Sarma, and B. Sahoo, “IEEE NEWCAS, June 2015
Calibration at Full-Speed

- Speed of existing calibration methods are limited by
  - Circuitry which applies the calibration inputs
- Calibration at low speed doesn't capture the error in residue
  - Due to insufficient settling of the op amp at high frequency
  - Incorrect gain estimation
- In order to facilitate calibration at full-speed the calibration voltages have to be generated using capacitors switching to $\pm V_R$.
- This eliminates the resistor ladder to generate the calibration voltages.

* C. Ravi, V. Sarma, and B. Sahoo,“ IEEE NEWCAS, June 2015
 Calibration Signal Generation for 1.5-bit Stage (1)

- Split the sampling capacitor and the feedback capacitor into two equal unit capacitors

- During normal operation
  - Sampling phase: Input is sampled onto all the capacitors
  - Amplification phase: 2 capacitors are flipped around
  - Remaining two capacitors switch to $kV_R$

---

* C. Ravi, V. Sarma, and B. Sahoo, “IEEE NEWCAS, June 2015
During Calibration,

- Sampling phase: \(-V_R\) sampled onto one sampling capacitors
- Remaining capacitors connected to ground for applying \(V_{T1} = -V_R/4\).
- Amplification phase: Two capacitors connected to \(KV_R\)
- Two capacitors flipped around

Resulting residue voltage is

\[
V_{out} = \frac{-V_R C_1 + KV_R (C_1 + C_2)}{C_3 + C_4 + \frac{C_1 + C_2 + C_3 + C_4}{A}}
\]

- This residue is same as if \(V_{IN} = -V_R/4\) is applied

* C. Ravi, V. Sarma, and B. Sahoo, “IEEE NEWCAS, June 2015
Similarly, we can mimic the generation of \( V_{T2} = V_R/4 \) by

- Applying \( V_R \) to one sampling capacitor
- Remaining connected to ground

* C. Ravi, V. Sarma, and B. Sahoo, “IEEE NEWCAS, June 2015*
Calibration Signal Generation for 2.5-bit Stage

- Calibration voltages for 2.5-bit stage architecture
  - $\pm 5V_R/8, \pm 3V_R/8, \text{ and } \pm V_R/8$
  - Represented as $nAV_R/8$, where, $A = -1$ for $V_{T1}$ to $V_{T3}$, $A = 1$ for $V_{T4}$ to $V_{T6}$, and $n = 5, 3, 1$
- To apply $V_{T1}$, $A = -1$ and $n = 5$
- Resulting residue is
  \[
  V_{out} = \frac{\sum_{i=1}^{5} C_i (-V_R) - \sum_{i=1}^{6} C_i V_R}{C_7 + C_8 + \frac{\sum_{i=1}^{8} C_i}{A}}
  \]
- Equivalent to applying $V_{T1} = -5V_R/8$
- Similar technique applied to 3.5-bit stage

* C. Ravi, V. Sarma, and B. Sahoo, “IEEE NEWCAS, June 2015

Bibhudatta Sahoo
Foreground Vs Background

- Capacitor mismatch does not change with supply voltage and temperature
  ➔ Power up foreground calibration is sufficient.

- Op amp gain changes with supply voltage and temperature
  ➔ Background calibration is a necessity.
Background Gain Calibration for Multi-bit, 1.5-bit, 2.5-bit, etc. MDACs
The input output characteristic of a 4-bit stage is:

\[ V_{OUT} = \frac{\sum_{m=1}^{16} C_m V_{IN} - \sum_{m=1}^{15} C_m A_{m,j} V_R}{C_F + C_P + \sum_{m=1}^{16} C_m} \]

\[ V_{OUT} = \alpha V_{IN} - \frac{\sum_{m=1}^{15} C_m A_{m,j} V_R}{C_F + C_P + \sum_{m=1}^{16} C_m} \]

Dividing both sides by \( V_R \) we get,

\[ D_{BE} = \alpha D_{IN} - \beta_j \]

\[ \Rightarrow D_{IN} = \frac{D_{BE}}{\alpha} + \gamma_j \]

where,

- \( \gamma_j \) is the capacitor mismatch \( \Rightarrow \) independent of op amp gain
- \( \alpha \) is the gain \((G_1)\Rightarrow \) function of op amp gain.
Proposed Calibration Algorithm

- Initially estimate the gain ($\alpha = G_1$) and the capacitor mismatch ($\gamma_j$) in the foreground using the calibration technique in $\Upsilon$.
- Then estimate the inter-stage gain $\alpha$, in the background.

---

MDAC gain ($\alpha$) changes $\Rightarrow$ slope of the residue characteristic changes.

Residue quantized by an ideal $M$-bit back-end to give a digital estimate, $D_{BE}$,

$$D_{BE,\min} = 2^{M-2} \quad \text{and} \quad D_{BE,\max} = 3 \times 2^{M-2} - 1$$

Ideally $\alpha = D_{BE,\max}/V_{LSB}/2$.

Parameter drift changes $D_{BE,\min}$ and $D_{BE,\max}$. 

Bibhudatta Sahoo
Calibration Algorithm

- Estimate the MDAC gain, $\alpha$ in the foreground mode using technique in $\Psi$.
- Estimate $D_{BE,max1}$ in the background mode, immediately after the foreground calibration is done. Thus, $\alpha = D_{BE,max1}/V_{LSB}/2$.
- Calibration engine keeps on estimating $D_{BE,max}$. If the gain drifts a new back-end maximum, $D_{BE,max2}$ is obtained, resulting in $\alpha_{new} = D_{BE,max2}/V_{LSB}/2$.
- Thus,

$$\frac{\alpha_{new}}{\alpha} = \frac{D_{max 2}}{D_{max 1}} \quad \Rightarrow \quad \alpha_{new} = \alpha \frac{D_{max 2}}{D_{max 1}}$$

Effect of Non-Idealities

- The estimation of $D_{BE, MAX}$ can be corrupted due to the following non-idealities:
  - Comparator Offset
  - Capacitor mismatch
  - Thermal Noise
Effect of Comparator Offset

- With comparator offset maximum back-end code changes from region to region, but slope in each region is the same.

- Maximum in any one region gives the accurate estimate of inter-stage gain.

- The region should be such that the calibration can work even with lower signal swing.

- For 2-bit MDAC, characteristic corresponding to output code of 1 or 2 is chosen.

- For 3-bit and 4-bit MDACs calibration would work for 1/4\textsuperscript{th} and 1/8\textsuperscript{th} of the signal swing.

Proposed calibration would thus require a minimum swing that is either 12 dB or 18 dB below full scale.
Effect of Capacitor Mismatch

- Capacitor mismatch changes the residue/back-end characteristic.
- Although the slope is the same in each region the maximum in each region is different.
- Calibration obtains the maximum back-end code for a particular region.
Effect of Thermal Noise

- Thermal noise corrupts the measurement of $D_{BE,\text{max}}$.
- Histogram of the back-end code estimates the true maximum code and eliminates the absolute maximum code.
- For a noisy bin to have the same height as that of a noiseless bin, the thermal noise should have a variance, $\sigma_{NTH} > 10$ LSB $\Rightarrow$ SNR degradation of approx. 30 dB.

Noisy bins cannot be of the same height as noiseless bins
Algorithm first calibrates the 2\textsuperscript{nd} stage that has an ideal back-end

Consider the 2\textsuperscript{nd} stage onwards as an ideal back-end and calibrate the 1\textsuperscript{st} stage

Calibration starts from the later stages and moves to the 1\textsuperscript{st} stage
Digital Hardware Complexity

- Histogram requires counters and finding the maximum requires comparators.
- For M-bit back-end, do we need $2^M$ comparators and counters! No 😊

- Foreground calibration gives an initial estimate of $D_{BE,max}$ and noise corrupts this by maximum of ±10 to ±20 back-end codes
- Hence maximum of 40 digital comparators and counters used
- Division operation is realized using Newton-Raphson technique, which requires a multiplier and adder
Simulation Setup

- Proposed calibration technique applied to the first 2 stages with the remaining two stages acting as an ideal back-end.
- Circuit noise has been added to each stage of the pipeline to limit the effective number of bits (ENOB) to 11.3 bits.

**Simulation Parameters**

<table>
<thead>
<tr>
<th>Stage No</th>
<th>Op gain</th>
<th>amp</th>
<th>$3\sigma$ — Comparator Offset</th>
<th>$3\sigma$ — Capacitor Mismatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 ± 20%</td>
<td>15 mV</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100 ± 20%</td>
<td>15 mV</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>
Simulation Results (1)

- Fig (a) shows the histogram of the output of stage-1 simulated with an op amp gain of 100 i.e., 40 dB and an ideal 9 bit back-end.
- Fig (b) shows the histogram with stage-1 op amp gain changed to 80 i.e., 20 % reduction in gain.
- Used sine wave as an input signal for this.
- For ramp and random Inputs similar histograms can be obtained.
Simulation Results (2)

Before Foreground Calibration

- ENOB = 7.5
- SNDR = 47 dB
- SFDR = 57 dB

Op amp gain = 100

Before BG Calibration

- ENOB = 9.5
- SNDR = 59 dB
- SFDR = 69 dB

Op amp gain = 80

After Foreground Calibration

- ENOB = 11.5
- SNDR = 71 dB
- SFDR = 96 dB

Op amp gain = 100

After BG Calibration

- ENOB = 11.3
- SNDR = 70 dB
- SFDR = 85 dB

Op amp gain = 80
Op amp Nonlinearity Calibration
Nonlinear op amp input-output characteristic,

\[ V_{out} = \alpha_1 V_{in} + \alpha_2 V_{in}^2 + \alpha_3 V_{in}^3 \]

Inverse given by,

\[ V_{in} = \sum_{i=0}^{\infty} \beta_i V_{out}^i \]

\[ \Rightarrow V_{in} = \sum_{i=0}^{\infty} \beta_i (\alpha_1 V_{in} + \alpha_2 V_{in}^2 + \alpha_3 V_{in}^3) \]

For a weakly nonlinear system we have,

\[ V_{in} = \beta_1 V_{out} + \beta_2 V_{out}^2 + \beta_3 V_{out}^3 \]

where,

\[ \beta_1 = \frac{1}{\alpha_1}, \beta_2 = \frac{-\alpha_2}{\alpha_1^3}, \beta_3 = \frac{2\alpha_2^2}{\alpha_1^5} - \frac{\alpha_3}{\alpha_1^4} \]

MDAC for 1.5-b/stage (1)

![MDAC Circuit Diagram](image)

\[
V_{out} = \frac{1 + \frac{C_S}{C_F}}{1 + \frac{1}{A} \left(1 + \frac{C_S}{C_F} + \frac{C_X}{C_F}\right)} V_{in} + \frac{C_S}{C_F} kV_{REF}
\]

- Conservation of charge gives:

\[
C_S V_{in} = (kV_{REF} - V_X) C_S + V_X C_X + (V_{out} - V_X) C_F
\]

\[
V_{in} = kV_{REF} + \left[\frac{C_F}{C_S} + \beta_1 \gamma\right] V_{out} + \beta_2 V_{out}^2 + \beta_3 V_{out}^3
\]

where,

\[
\gamma = \frac{C_X + C_F}{C_S} - 1
\]

MDAC for 1.5-b/stage (2)

- Defining \( D_{in} \equiv V_{in}/V_{REF} \) and \( D_{out} \equiv V_{out}/V_{REF} \) the input-output characteristic is given by,

\[
D_{in} = D_1 + \eta_1 D_{out} + \eta_2 D_{out}^2 + \eta_3 D_{out}^3
\]

where,

\[
\eta_1 = \frac{C_F}{C_S} + \gamma \beta_1, \eta_2 = \gamma \beta_2, \eta_3 = \gamma \beta_3
\]

- Calibration thus estimates the coefficients of \( D_{out} \).

Pipelined ADC Modeling (1)

Recursive implementation of the pipelined ADC,

\[ D_{out} = D_{in,1} \]

\[ D_{in,1} = D_1 + \eta_{1,1}D_{out,1} + \eta_{2,1}D_{out,2}^2 + \eta_{3,1}D_{out,3}^3 \]

\[ D_{in,2} = D_2 + \eta_{1,2}D_{out,2} + \eta_{2,2}D_{out,2}^2 + \eta_{3,2}D_{out,2}^3 \]

\[ \cdots \]

\[ D_{in,N} = D_N + \eta_{1,N}D_{out,N} + \eta_{2,N}D_{out,N}^2 + \eta_{3,N}D_{out,N}^3 \]

\[ D_{in,N+1} = D_{N+1} + \eta_{1,N+1}D_{out,N+1} + \eta_{2,N+1}D_{out,N+1}^2 + \eta_{3,N+1}D_{out,N+1}^3 \]

• Recursive relation can be written as,

\[
D_{\text{out}} = D_{\text{in,1}}
\]

\[
D_{\text{in,1}} = D_1 + \eta_{1,1}D_{\text{out,1}} + \eta_{3,1}D_{\text{out,1}}^3
\]

\[
D_{\text{in,2}} = D_2 + \eta_{1,2}D_{\text{out,2}} + \eta_{3,2}D_{\text{out,2}}^3
\]

\[
D_{\text{in,3}} = D_3 + \sum_{i=3}^{15} \prod_{j=3}^{i} \eta_{1,j} D_{i+1}
\]

FIR Filter Implementation

\[ D_{\text{out}} = D_{\text{in,1}} \]
\[ D_{\text{in,1}} = D_1 + \eta_{1,1} D_{\text{out,1}} + \eta_{3,1} D_{\text{out,1}}^3 \]
\[ D_{\text{in,2}} = D_2 + \eta_{1,2} D_{\text{out,2}} + \eta_{3,2} D_{\text{out,2}}^3 \]
\[ D_{\text{in,3}} = D_3 + \sum_{i=3}^{15} \prod_{j=3}^{i} \eta_{1,j} D_{i+1} \]

- \( D_{\text{in,3}} \) does not need multipliers.


Workshop on Analog VLSI 2017
Workshop on Analog VLSI 2017

Calibration Concept (1)

- $V_{in1} \Rightarrow D_1 = D_{1,1} + f_{i}^{-1}(D_{BE1})$
- $V_{in1} + \Delta V \Rightarrow D_2 = D_{1,1,\Delta} + f_{i}^{-1}(D_{BE2})$
- $\Delta V \Rightarrow D_{\Delta} = D_{1,\Delta} + f_{i}^{-1}(D_{BE\Delta})$
- Cost function $\Rightarrow \varepsilon = (D_{\Delta} - (D_1 - D_2))^2$
- Repeat above measurement for various values of $V_{in,j}$

Calibration Concept (2)

- Perturbation voltage $\Delta V$:
  - need not be known accurately.
  - must remain constant when $V_{in}$ is swept to cover the entire range.

- $V_{in,j}$ values need not be equally spaced.

- Offset voltage incorporated in cost function:

$$\varepsilon = (D_\Delta - D_{OS} - (D_1 - D_2))^2$$

Addition or subtraction of perturbation voltage $\Delta V$ at all input levels causes residue overflow.

$\Delta V$ is subtracted for $V_{in} > -V_{REF}/4$ and is added otherwise.

Properties of Cost Function (1)

- The output computed for $V_{in,j}$, $V_{in,j} + \Delta V$ and $\Delta V$ is given by,

\[
D_{out,j} = D_{1,j} + \eta_1 D_{BE,j}
\]
\[
D_{out,j,\Delta} = D_{1,j,\Delta} + \eta_1 D_{BE,j,\Delta}
\]
\[
D_{out,\Delta} = D_{1,\Delta} + \eta_1 D_{BE,\Delta}
\]

- Mean squared error is given as,

\[
\epsilon^2_{MSE} = \frac{1}{128} \sum_{j=1}^{128} \left[ |D_{out,j} - D_{out,j,\Delta}| - D_{out,\Delta} \right]^2
\]

Properties of Cost Function (2)

- The output computed for $V_{in,j}$, $V_{in,j} + \Delta V$ and $\Delta V$ is given by,

$$D_{out,j} = D_{1,j} + \eta_1 \left( D_{2,j} + \eta_2 D_{BE,j} \right)$$

$$D_{out,j,\Delta} = D_{1,j,\Delta} + \eta_1 \left( D_{2,j,\Delta} + \eta_2 D_{BE,j,\Delta} \right)$$

$$D_{out,\Delta} = D_{1,\Delta} + \eta_1 \left( D_{2,\Delta} + \eta_2 D_{BE,\Delta} \right)$$

Properties of Cost Function (3)

- Capacitor mismatch leads to asymmetric MSE curve.
- A minimum still exists.
- Can be extended to $N$ stages having both gain error and nonlinearity with the overall $\varepsilon_{MSE}$ still displaying a minimum.

Blind LMS Algorithm

- Initial estimate of the gain error and the nonlinear coefficient provided to the LMS engine.

- Digital bits corresponding to $V_{in,j}$ and $V_{in,j} + \Delta V$ stored in a memory to be retrieved by LMS engine.

- Calibration signals $V_{in,j}$ and $V_{in,j} + \Delta V$ applied at full clock rate
  - Corrects for incomplete settling components in the MDAC.

- LMS machine runs at slow rate ($f_s/16$).

Radix Based Calibration (1)

\[ V_O = \frac{1}{1 + \frac{C_S + C_F}{AC_F}} \left( \frac{C_S + C_F}{C_F} V_i - \frac{C_S}{C_F} D V_{ref} \right) \]

\[ \rightarrow V_O = (1 + \delta)(2 + \alpha) \left\{ V_i - \frac{(1 + \beta)}{(2 + \alpha)} D V_{ref} \right\} \]

where, \( (1 + \delta) = \frac{1}{1 + \frac{C_S + C_F}{AC_F}} \), \( (2 + \alpha) = \frac{C_S + C_F}{C_F} \),

and \( (1 + \beta) = \frac{C_F}{C_F} \)


Bibhudatta Sahoo
The digital output can be represented as:

\[ D_0 = D_n + D_n(ra) + D_n(ra)^2 + \cdots + D_1(ra)^{n-1} \]

where, \( ra = (1 + \delta)(2 + \alpha) \) and reference voltage of each stage is scaled.

Since the reference is scaled for each stage this is not attractive.

However if each stage uses a non-flip-around topology then,

\[ D_0 = D_n + D_n(ra) + D_n(ra)^2 + \cdots + D_1(ra)^{n-1} \]

where, \( ra = (1 + \delta)(2 + \alpha) \) and reference voltage of each stage is not scaled.


Representation of the pipelined ADC with each stage using 1.5-bit non-flip around topology.
The new radix is \( ra = (1 + \beta_i)(1 + \delta_i) \frac{(2+\alpha_{i+1})}{(1+\beta_{i+1})} \).

The reference voltage is not scaled from stage-to-stage.

Radix Based Calibration (4)

\[ D_{BE} = P_N \cdot \alpha_e - D_{res} - P_N \cdot \alpha \]

\[ \Rightarrow D_e = \alpha_e - \alpha - P_N \otimes D_{res} \]

\[ \Rightarrow \alpha = \alpha_e - D_e \]

Radix Based Calibration (5)

- Large convergence time as $D_{BE}$ has to be correlated for a long time to guarantee that $P_N \otimes D_{\text{res}}$ vanishes.

- Generation of precise analog voltage $\pm V_{PN}$ whose digital value is PN.

- Reduction in dynamic range of the ADC due to injection of pseudorandom voltage $\pm V_{PN}$.

Open Loop Op amp Nonlinearity Calibration

The 12-bit pipelined ADC incorporates:
- 3-bit stage-1 realized using open-loop amplifier.
- 1-bit stage-2 (with 1 redundant bit to incorporate the signal injection for calibration).
- Seven 1.5-bit stages
- 3-bit flash ADC.

Although 14-bits of raw data the last two bits are used for calibration purpose.

Only stage-1 is calibrated for linear gain error and non-linearity.

All other stages form an ideal Back-end ADC.

Stage-1 that incorporates an open-loop amplifier is modeled as per the above block diagram with various error sources:

- $V_{os} \rightarrow$ op amp offset
- $\Delta \rightarrow$ gain error $\rightarrow$ modeled by calibration parameter $p_1$.
- $a_3 \rightarrow 3^{rd}$ order nonlinear term of the open-loop op amp.

Open Loop Op amp Nonlinearity Calibration

Amplifier model with input referred nonlinearity

\[ e(V_{res1}) = V_{res1} - 2 \sqrt{-\frac{1}{3p_2}} \cos \left( \frac{\pi}{3} + \frac{1}{3} \cos^{-1} \left( \frac{V_{res1}}{2 \sqrt{-\frac{1}{27p_2}}} \right) \right) \]

where, \( V_{res1} \) is digitized by the back-end ADC and

\[ p_2 = \frac{a_3}{(2^3 - \Delta)^3} \]

Open Loop Op amp Nonlinearity Calibration

\[ e(D_b) = D_b - 2 \sqrt{-\frac{1}{3p_2}} \cos \left[ \frac{\pi}{3} + \frac{1}{3} \cos^{-1} \left( \frac{D_b}{2\sqrt{-\frac{1}{27p_2}}} \right) \right] \]

where, \( D_b \) is the back-end ADC output and the calibration engine estimates \( p_2 \).

V_{res1} can generate two curves based on the digital random-bit MODE.

- In order to accommodate the two transfer curves and not saturate the back-end ADC stage-2 has 1-bit of redundancy.
- The residue characteristic with nonlinearity shows compression.
- Nonlinearity is overcome if h_1 = h_2, i.e. the distance between the two residue characteristic is constant at all points.
- Its sufficient to estimate the distance at the center and at the extremes.

Open Loop Op amp Nonlinearity Calibration


Bibhudatta Sahoo
Estimation of the gain error \( p_1 \) is similar to the method in Li2003.

Estimation of nonlinearity \( p_2 \) is based on an LMS method which minimizes the MSE of \( (H_1 - H_2) \).

\( (H_1 - H_2) \) is a function of \( p_2 \) as per

\[
e(D_b) = D_b - 2 \sqrt{-\frac{1}{3p_2}} \cos \left[ \frac{\pi}{3} + \frac{1}{3} \cos^{-1} \left( \frac{D_b}{2\sqrt{-\frac{1}{27p_2}}} \right) \right]
\]

Requires that the inputs be sufficiently busy, i.e., the analog input to the ADC be such that it exercises all the ADC levels. If the signal is not full scale then the calibration cannot estimate the nonlinearity.

As shown below in the residue characteristic of stage-1, if the signal is within $1/16$ of the full scale then also it exercises the full-scale of the back-end ADC and hence estimates the nonlinearity.

The open-loop amplifier is very susceptible to gain variation due to temperature. If the LMS loop has a smaller time-constant as opposed to the gain variation then the calibration works.

All stages use 1.5-bit flip-around topology.

- Gain error, capacitor mismatch, and op amp nonlinearity correction done in the 1st two stages.
- Gain error and capacitor mismatch calibration done in stage 3 to 6.
- No calibration for the remaining stages.
- LMS is used to do gain error and op amp nonlinearity calibration.

Calibration requires a precision DAC.
- For the 10-bit system here the reference DAC has to be 11-bit linear.
- Calibration applies $\pm V_R/2$, $\pm V_R/4$, and 0 from the reference DAC to stage-$j$ for calibration.
- Stage-$j$ is configured in multiply-by-2 configuration.
- The digitized output of stage-$j$ is given by
  \[
  D_{tot} = \alpha_1 D_{BK} + \alpha_3 D_{BK}^3
  \]
- $\alpha_1$ and $\alpha_3$ are updated using the following LMS equation:
  \[
  \alpha_1(k + 1) = \alpha_1(k) + \mu(D_{cal} - D_{tot})D_{BK}
  \]
  \[
  \alpha_3(k + 1) = \alpha_3(k) + \mu(D_{cal} - D_{tot})D_{BK}^3
  \]

10-bit 500 MHz 55 mW CMOS ADC (3)

10-bit 500 MHz 55 mW CMOS ADC (4)

Calibration requires a precision DAC.
- For a 10-bit system the reference DAC has to be 11-bit linear
- For a 12-bit system the reference DAC has to be 13-bit linear
- Difficult to realize highly linear and precise DACs
- The calibration technique cannot be used to calibrate more than 10-bit systems.

Calibration applies signals from the resistor ladder → calibration cannot be run at the full-speed of the ADC because of the RC-settling issue.

High frequency settling behavior of the op amps is not captured.

Thank You
References

Scaling Trends:
References


Pipelined ADC—Overview and Design Strategies:


References


Calibration Techniques for Pipelined ADCs:

References

References


